Varsaw University of Technology
 Faculty of Power and Aeronautical Engineering
 Institute of Aeronautics and Applied Mechanics

Supersonic wind tunnel testing

Idalia Jagodzińska, Bartosz Olszański, Zbigniew Nosal

Forces and moments measurements by the 6-component external balance

- Measurement range: 2kN, 1.5kN, 200Nm, 50Nm
- External balance fixed in a disk-shaped housing mounted in a cavity in a side wall of the tunnel
- Model with a fixed pin mounted to the balance
- Angle of attack change provided by disk rotation
- Time series of 6-components (forces and moments) available

NACA 0012 airfoil

- Large oscilations of forces and moments
- Reversal of normal (lift) and axial forces
- Resonance frequency depending on the type and weight of the model

Diamond profile

- Good directions of forces
- Very limited range of angles of attack

Visualisations by Schlieren optical technique

- Schlieren optical system
- 270 mm diameter mirrors
- continous light source
- high speed camera acquisition (3000fps)

Wind tunnel choking

Cylindrical model- influence of diameter size

Regulated diffuser throat height

- improved characteristics, low noise
- wind tunnel opening/close peaks
- high angle of attack range
- allows for full $c_{L}(\alpha)$ characteristics

WUT

Conclusions and perspectives

- preliminary tests of supersonic wind tunnel have been performed on NACA 0012 airfoil, diamond profile and other models
- forces and moments measurements has been done with use of an external balance as well as visualisation by Schlieren optical technique
- choking problem has been solved by regulating the diffuser opening height
- quantitative results of forces and moments has already been obtained for different models
- use of internal balance would allow for simultaneous visualisation and comparison of visible phenomena with acquired data